

FICHA 1: Monomios

1. Sumar monomios semejantes (véase el 1 el ejemplo):

a)
$$3x^2 + 4x^2 - 5x^2 = 2x^2$$
 $3+4-5$

b)
$$6x^3 - 2x^3 + 3x^3 =$$

c)
$$x^5 + 4x^5 - 7x^5 =$$

d)
$$-2x^4 + 6x^4 + 3x^4 - 5x^4 =$$

e)
$$7x + 9x - 8x + x =$$

$$f) \quad 2y^2 + 5y^2 - 3y^2 =$$

g)
$$3x^2y - 6x^2y + 5x^2y =$$

h)
$$4xy^2 - xy^2 - 7xy^2 =$$

i)
$$2a^6 - 3a^6 - 2a^6 + a^6 =$$

j)
$$ab^3 + 3ab^3 - 5ab^3 + 6ab^3 - 4ab^3 =$$
 (Sol: ab^3)

k)
$$7xy^2z - 2xy^2z + xy^2z - 6xy^2z =$$
 (Sol: 0)

I)
$$-x^3 + 5x - 2x + 3x^3 + x + 2x^3 =$$

m)
$$x^4 + x^2 - 3x^2 + 2x^4 - 5x^4 + 8x^2 =$$

n)
$$3a^2b - 5ab^2 + a^2b + ab^2 =$$

o)
$$\frac{7}{3}x^2 + \frac{4}{3}x^2 =$$

p)
$$12x^5 - x^5 - 4x^5 - 2x^5 - 3x^5 =$$

q)
$$\frac{7}{4}x^5 + \frac{1}{4}x^5 =$$

r)
$$x^2y^2 - 5x^2y^2 - (3x^2y^2 - 4x^2y^2) - 8x^2y^2 =$$
 (Sol: -11x²y²)

s)
$$29x - x =$$

t)
$$x^2 + \frac{x^2}{3} =$$

u)
$$x^2 + x^2 =$$

v)
$$\frac{1}{2}x^3 - \frac{5}{2}x^3 + \frac{3}{2}x^3 =$$

w)
$$-(ab^3 + a^3b) - 3a^3b + 5ab^3 - (a^3b - 2ab^3) =$$
 (Sol: $6ab^3 - 5a^3b$)

x)
$$7x^2 - \frac{1}{2}x^2 - \frac{5}{2}x^2 + 2x^2 + \frac{3}{2}x^2 =$$
 (Sol: 15x²/2)

y)
$$-x + x^2 + x^3 + 3x^2 - 2x^3 + 2x + 3x^3 =$$

z)
$$2a^2b + 5a^2b - \frac{2}{3}a^2b - a^2b + \frac{a^2b}{2} =$$
 (Sol: 35a²b/6)

$$\alpha) -x^3 + \frac{5x^3}{4} - \frac{2x^3}{3} + 3x^3 + \frac{x^3}{2} =$$
 (Sol: 37x³/12)

$$\beta) \quad 7x^3 - \frac{1}{2}x^2 - \frac{5}{2}x^3 + 2x^2 + \frac{3}{2}x^3 =$$
 (Sol: $6x^3 + 3x^2/2$)

2. Efectuar los siguientes **productos y cocientes (y potencias) de monomios** (véase el 1^{er} ejemplo):

a)
$$3x^2 \cdot 4x^3 = (3 \cdot 4) x^2 x^3 = 12x^5$$

b)
$$2x^3 \cdot 4x^3 \cdot 3x^3 =$$

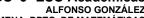
c)
$$x^3 \cdot x^3 =$$

d)
$$-2x^4 \cdot 3x^3 =$$

e)
$$7x \cdot (-8x^2) =$$

f)
$$(-3y^2) \cdot (-2y^3) =$$

g)
$$3x^2y \cdot 6xy^3 =$$


h)
$$\frac{3}{4}x^2 \cdot \frac{5}{2}x^3 =$$

i)
$$4a^3b^2 \cdot a^2b \cdot 7ab =$$

j)
$$-\frac{1}{2}a^3 \cdot \frac{5}{3}a^4 =$$

k)
$$2a^6 \cdot 3a^6 \cdot 2a^6 =$$

$$1) \quad \frac{2}{5}x^3 \cdot \left(-\frac{3}{2}x\right) =$$

m)
$$ab^3 \cdot (-3a^2b) \cdot 5a^3b =$$

n)
$$x^2 \cdot \frac{1}{3}x^5 =$$

o)
$$-ab^2c^3 \cdot (-3a^2bc) \cdot 3abc =$$

p)
$$(6x^4)$$
: $(2x^2)$ =

q)
$$\frac{12a^6}{3a^3} =$$

r)
$$15x^4: (-3x) =$$

s)
$$\frac{-14x^7}{7x^2} =$$

t)
$$-8x^4:(-4x^3)=$$

u)
$$\frac{5x^7y^3}{x^2y} =$$

v)
$$(-18x^4):(6x^3)=$$

w)
$$\frac{-12a^5b^4c^6}{2a^3b^2c} =$$

x)
$$2x^4 \cdot 6x^3 : (4x^2) =$$
 (Sol: $3x^5$)

y)
$$\frac{3a^5b \cdot (-12a^4b^2)}{4a^3b^2} =$$
 (Sol: -9a⁶b)

z)
$$27x^4: (-9x^3) \cdot (-2x^2) =$$
 (Sol: $6x^3$)

a)
$$(2x)^2 =$$

β)
$$(3x^2y)^3 =$$

$$\gamma$$
) $(3x^2y)^{-2} =$

δ)
$$(3x^2y)^{-1} =$$

$$\epsilon) \quad \left(-xyz\right)^5 =$$

3. Efectuar las siguientes operaciones combinadas con monomios:

a)
$$15x^5 - 3x^3 \cdot 4x^2 =$$
 (Sol. $3x^5$)

b)
$$2x^3 + 4x^3 \cdot 5x - 2x \cdot (-x^2) =$$
 (Sol: $20x^4 + 4x^3$)

c)
$$3a \cdot ab - 2a^2 \cdot (-4b) - 8 \cdot (2a^2b) =$$
 (Sol: -5a^2b)

d)
$$3x^2 + 4x^2 - 2x^2 \cdot (-3x) - (4x^3 + x^2 - 2x \cdot x^2) =$$
 (Sol: $4x^3 + 6x^2$)

e)
$$-3xy^2 - (-4x \cdot 7y^2) + [8x^2y^3 : (2xy)] =$$
 (Sol: 29xy²)

f)
$$(-y^2) \cdot (-2y^2) - 5y \cdot (-2y^3) + 3y^3 \cdot (-4y) =$$
 (Sol: 0)

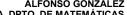
g)
$$(3x^3 \cdot 6x - 2x^2 \cdot x^2) : (4x^2 \cdot 3x^2 - 8x \cdot x^3) =$$
 (Sol: 4)

h)
$$3x^5 - \frac{4}{3}x^2 \cdot \frac{3}{2}x^3 =$$
 (Sol: x^5)

i)
$$4a^2b \cdot (-ab^2) \cdot 5ab - 8a^4b^4 =$$
 (Sol:-28a⁴b⁴)

j)
$$a^5 + \frac{5}{6}a^3 \cdot \frac{3}{5}a^2 =$$
 (Sol: $3a^5/2$)

k)
$$5x^6 - 2x^6 \cdot 3x^6 : (-2x^6) =$$
 (Sol: 8x⁶)


m)
$$2ab \cdot (-a^3b) + [ab^2 \cdot (-3a^2b)] - 5a^3b \cdot ab + ab \cdot a^2b^2 =$$
 (Sol: $-7a^4b^2 - 2a^3b^3$)

n)
$$2x^2 \cdot \frac{1}{3}x^3 + \frac{21x^7}{3x^2} =$$
 (Sol: 23x⁵/3)

o)
$$-x^2y - (-3x^2 \cdot 7y) + \frac{16x^2y^3z}{4y^2z} =$$
 (Sol: 24x²y)

p)
$$ab^2 - \frac{7}{2}ab^2 \cdot \left(-\frac{2}{3}ab\right) + \frac{(2ab)^4}{24a^2b} + 2ab \cdot (-b) =$$
 $\left(Soluc: 3a^2b^3 - ab^2\right)$

q)
$$\frac{7}{3}x^2 - \frac{1}{5}x^2 + \left(\frac{2}{3}x^2y\right)^2 : (xy^2) =$$
 $\left(Soluc : \frac{32}{15}x^2 + \frac{4}{9}x^3\right)$

r)
$$\frac{27x^5y^7}{(3xy^2)^2} - 2x^2y \cdot (-xy^2) + x^3y^3 =$$
 (Sol: $6x^3y^3$)

s)
$$x + 2x \cdot 5x^2 - 3x^2 : (3x) =$$
 (Sol: 10x³)

FICHA 2: Valor numérico de un polinomio. Sumas y restas de polinomios.

1. Hallar el valor numérico de cada polinomio para el valor indicado de la indeterminada (Véase el 1el ejemplo):

a)
$$P(x) = x^2 + x + 1$$
, para $x = 2 \rightarrow P(2) = 2^2 + 2 + 1 = 4 + 2 + 1 = 7$

b)
$$P(x) = x^2 + x + 1$$
, para $x = -2$ (Sol: 3)

c)
$$P(x) = 2x^2 - x + 2$$
, para $x = 3$ (Sol: 17)

d)
$$P(x) = 2x^2 - x + 2$$
, para $x = -2$ (Sol: 12)

e)
$$P(x) = -x^2 - 3x + 4$$
, para $x = 4$ (Sol: -24)

f)
$$P(x) = -x^2 + 3x + 4$$
, para $x = -1$ (Sol: 0)

g)
$$P(x) = x^3 + 3x^2 + 1$$
, para $x = 0$ (Sol: 1)

h)
$$P(x) = x^3 - 4x^2 + x + 3$$
, para $x = -3$ (Sol: -63)

i)
$$P(x) = x^4 - 4x^2 - 1$$
, para $x = 2$ (Sol: -1)

j)
$$P(x) = -x^3 - 3x^2 - x + 2$$
, para $x = -4$ (Sol: 22)

k) P(x) =
$$x^3 - \frac{2}{3}x^2 - \frac{x}{4} + 10$$
, para x = -2 (Sol: -1/6)

I)
$$P(x) = x^3 - \frac{4}{3}x^2 + \frac{5}{2}x - 1$$
, para $x = 5$ (Sol: 619/6)

m) P(
$$x$$
) = $x^3 - 2x^2 + \frac{2}{3}x - 1$, para $x = 1/2$ (Sol: -25/24)

n) P(
$$x$$
) = $x^3 + \frac{x^2}{9} - \frac{x}{3} + 27$, para $x = -3$ (Sol: 2)

o)
$$P(x) = x^3 + 9x^2 + 27x + 27$$
, para $x = -3$ (Sol: 0)

2. a) Dado
$$P(x) = x^2 + 2x + k$$
, hallar el valor de **k** para que $P(2)=6$

(Sol: K=-2)

b) Dado
$$P(x) = x^2 - kx + 2$$
, hallar el valor de **k** para que $P(-2)=8$

(Sol: K=1)

c) Dado
$$P(x) = kx^3 - x^2 + 5$$
, hallar el valor de k para que $P(-1)=1$

(Sol: K=3)

3. Dados los siguientes polinomios:

$$P(x) = 2x^3 - 3x^2 + 4x - 2$$

$$Q(x) = x^4 - x^3 + 3x^2 + 4$$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar:

a)
$$P(x) + Q(x) =$$

(Sol: x^4+x^3+4x+2)

b)
$$P(x) + R(x) =$$

(Sol: $2x^3-x+3$)

c)
$$P(x) + S(x) =$$

(Sol: $2x^3-3x^2+7x-4$)

d)
$$S(x) + P(x) =$$

(Sol: ídem)

e)
$$P(x) + P(x) =$$

(Sol: $4x^3-6x^2+8x-4$)

¿De qué otra forma se podría haber calculado?

f)
$$7P(x) =$$

g)
$$Q(x) - S(x) =$$

(Sol:
$$x^4 - x^3 + 3x^2 - 3x + 6$$
)

h)
$$Q(x) + R(x) =$$

(Sol:
$$x^4-x^3+6x^2-5x+9$$
)

i)
$$P(x) - R(x) =$$

(Sol:
$$2x^3-6x^2+9x-7$$
)

j) Q(x) + S(x) =(Sol: $x^4-x^3+3x^2+3x+2$)

k) P(x) - S(x) =(Sol: $2x^3 - 3x^2 + x$)

I) S(x) - P(x) =(Sol: $-2x^3+3x^2-x$)

m) P(x) - P(x) =(Sol: 0)

n) R(x) - S(x) =(Sol: $3x^2 - 8x + 7$)

o) P(x) - Q(x) + R(x) = $(Sol: -x^4+3x^3-3x^2-x-1)$

p) Q(x) - [R(x) + S(x)] =(Sol: $x^4 - x^3 + 2x + 1$)

q) S(x) - [R(x) - Q(x)](Sol: x^4-x^3+8x-3)

r) Q(x) - [P(x) - Q(x)](Sol: -P(x))

FICHA 3: Productos de polinomios. Operaciones combinadas.

1. Efectuar los siguientes **productos** en los que intervienen **monomios**, dando el resultado simplificado:

a)
$$(-2x^3) \cdot \left(\frac{4}{5}x^2\right) \cdot \left(\frac{1}{2}x\right) =$$

b)
$$\left(-\frac{5}{7}x^{7}\right)\cdot\left(\frac{3}{5}x^{2}\right)\cdot\left(-\frac{4}{3}x\right) =$$
 (Soluc: $\frac{4}{7}x^{10}$)

c)
$$5x^3 \cdot 3x^2y \cdot (-4xz^3) =$$
 (Soluc: -60x⁶yz³)

d)
$$-3ab^2 \cdot 2ab \cdot \left(-\frac{2}{3}a^2b\right) =$$
 (Soluc: $4a^4b^4$)

e)
$$2x^2 \cdot (3x^4 - 2x^3 + 2x^2 + 5) =$$
 (Soluc: $6x^6 - 4x^5 + 4x^4 + 10x^2$)

f)
$$(-2x^5 + 3x^3 - 2x^2 - 7x + 1) \cdot (-3x^3) =$$
 (Soluc: $6x^8 - 9x^6 + 6x^5 + 21x^4 - 3x^3$)

g)
$$4a^3 \cdot (-a^3 + 3a^2 - a + 1) =$$
 (Soluc: $-4a^6 + 12a^5 - 4a^4 + 4a^3$)

h)
$$(-y^4 + 2y^3 - 3y^2 + 2) \cdot (-2y^2) =$$
 (Soluc: $2y^6 - 4y^5 + 6y^4 - 4y^2$)

i)
$$12x^2 \cdot \left(\frac{2}{3}x^3 - \frac{3}{2}x^2 + \frac{4}{5}x - \frac{5}{4}\right) =$$

$$\left(\text{Soluc: } 8x^5 - 18x^4 + \frac{48}{5}x^3 - 15x^2\right)$$

$$\mathbf{j)} \left(\frac{1}{2} ab^3 - a^2 + \frac{4}{3} a^2 b + 2ab \right) \cdot 6a^2 b =$$

(Soluc: $3a^3b^4 - 6a^4b + 8a^4b^2 + 12a^3b^2$)

2. Dados los siguientes polinomios: $P(x) = 2x^3 - 3x^2 + 4x - 2$ $Q(x) = x^4 - x^3 + 3x^2 + 4$

$$R(x) = 3x^2 - 5x + 5$$

$$S(x) = 3x - 2$$

Hallar los siguientes productos:

a)
$$P(x) \cdot R(x) =$$

(Sol: $6x^5 - 19x^4 + 37x^3 - 41x^2 + 30x - 10$)

b)
$$P(x) \cdot S(x) =$$

(Sol: $6x^4 - 13x^3 + 18x^2 - 14x + 4$)

~\	$S(x) \cdot P(x) =$	(Sol: Ídem)
C)	$(x) \cdot F(x) =$	(301. luelli)

d)
$$P(x) \cdot P(x) =$$

(Sol:
$$4x^6 - 12x^5 + 25x^4 - 32x^3 + 28x^2 - 16x + 4$$
)

e)
$$Q(x) \cdot S(x) =$$

(Sol:
$$3x^5 - 5x^4 + 11x^3 - 6x^2 + 12x - 8$$
)

f)
$$[Q(x)]^2 =$$

(Sol:
$$x^8 - 2x^7 + 7x^6 - 6x^5 + 17x^4 - 8x^3 + 24x^2 + 16$$
)

g)
$$R(x) \cdot S(x) =$$

(Sol:
$$9x^3-21x^2+25x-10$$
)

h)
$$R^2(x) =$$

(Sol:
$$9x^4 - 30x^3 + 55x^2 - 50x + 25$$
)

i)
$$P(x) \cdot Q(x) =$$

(Sol:
$$2x^7 - 5x^6 + 13x^5 - 15x^4 + 22x^3 - 18x^2 + 16x - 8$$
)

j)
$$Q(x) \cdot R(x) =$$

(Sol:
$$3x^6 - 8x^5 + 19x^4 - 20x^3 + 27x^2 - 20x + 20$$
)

k)
$$S^{2}(x) =$$

(Sol:
$$9x^2-12x+4$$
)

3. Dados los polinomios del ejercicio anterior, realizar las siguientes **operaciones combinadas**:

a)
$$[P(x) + Q(x)] \cdot R(x) =$$

(Sol: $3x^6-2x^5+17x^3-14x^2+10x+10$)

b)
$$[Q(x) - R(x)] \cdot S(x) =$$

(Sol: $3x^5 - 5x^4 + 2x^3 + 15x^2 - 13x + 2$)

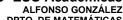
c)
$$[P(x) + Q(x) - S(x)] \cdot R(x) =$$

(Sol: $3x^6-2x^5+8x^3+7x^2-15x+20$)

d)
$$[P(x) - Q(x)] \cdot [R(x) + S(x)] =$$

(Sol: $-3x^6+11x^5-27x^4+33x^3-44x^2+24x-18$)

e)
$$P(x) + 2Q(x) =$$


(Sol: $2x^4+3x^2+4x+6$)

f)
$$P(x) - R(x) \cdot S(x) =$$

g)
$$P(x) - 3[Q(x) + R(x)] =$$

 $(Sol: -3x^4 + 5x^3 - 21x^2 + 19x - 29)$

h)
$$Q(x) - P(x) \cdot S(x) =$$

i)
$$P(x) - 2Q(x) + 3R(x) =$$

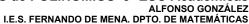
(Sol:
$$-2x^4+4x^3-11x+5$$
)

j)
$$2 P(x) \cdot Q(x) - R(x) =$$

(Sol:
$$4x^7 - 10x^6 + 26x^5 - 30x^4 + 44x^3 - 39x^2 + 37x - 21$$
)

k)
$$P(x) - P(x) \cdot R(x) =$$

I)
$$Q(x) \cdot [2R(x) - 3S(x)] =$$


(Sol:
$$6x^6 - 25x^5 + 53x^4 - 73x^3 + 72x^2 - 76x + 64$$
)

m)
$$- [Q(x) + 2R(x)] \cdot S(x) =$$

(Sol:
$$-3x^5+5x^4-29x^3+48x^2-62x+28$$
)

n)
$$P(x) - 2x \cdot Q(x) =$$

(Sol:
$$-2x^5+2x^4-4x^3-3x^2-4x-2$$
)

4. Realizar las siguientes **operaciones combinadas** de polinomios:

a)
$$(x^3 + 2) \cdot [(4x^2 + 2) - (2x^2 + x + 1)] =$$

(Sol: $2x^5 - x^4 + x^3 + 4x^2 - 2x + 2$)

b)
$$(4x + 3) \cdot (2x - 5) - (6x^2 - 10x - 12) =$$

(Sol: $2x^2-4x-3$)

c)
$$(x^2 - 3) \cdot (x + 1) - (x^2 + 5) \cdot (x - 2) =$$

(Sol: $3x^2 - 8x + 7$)

d)
$$(x^3 + 2) \cdot (4x^2 + 2) - (2x^2 + x + 1) =$$

(Sol: $4x^5+2x^3+6x^2-x+3$)

e)
$$(2x^2 + x - 2)(x^2 - 3x + 2) - (5x^3 - 3x^2 + 4) =$$

(Sol: $2x^4 - 10x^3 + 2x^2 + 8x - 8$)

f)
$$(x^2-3x+2) \cdot [(5x^3-3x^2+4)-(2x^2+x-2)] =$$

(Sol: $5x^5 - 20x^4 + 24x^3 - x^2 - 20x + 12$)

g)
$$2x^2 + x - 2 - (x^2 - 3x + 2) \cdot (5x^3 - 3x^2 + 4) =$$

(Sol: $-5x^5+18x^4-19x^3+4x^2+13x-10$)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

h)
$$\frac{2x^2}{5} \cdot \left(x^3 - 3x^2 + x - 1\right) - x^3 \cdot \left(\frac{x^2}{2} - x + \frac{2}{3}\right) =$$

(Sol: $-x^5/10-x^4/5-4x^3/15-2x^2/5$)

i)
$$(-2x^2 + x - 2)(-x^2 + 1) - (2x^5 - x^4 + x^2 + 2x - 1) =$$

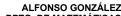
(Sol:
$$-2x^5+3x^4-x^3-x^2-x-1$$
)

j)
$$-2x \cdot \left(-\frac{x^2}{4}\right) \cdot 2x^3 - 2x^2 - \left(x^4 + 5x^2 - 1\right) \cdot \left(x^2 - 3\right) =$$

(Sol:
$$-2x^4+14x^2-3$$
)

k)
$$2(x^3 + 3x - 1) - (2x^3 - x^2 - 1)(-x^2 + 3x + 1) =$$

(Sol:
$$2x^5 - 7x^4 + 3x^3 + 9x - 1$$
)


$$\textbf{I)} \quad \left(\frac{1}{2}x^2 + \frac{3}{4}x\right) - \left(\frac{5}{4}x + 7\right) + \frac{7}{2}x^2 - \frac{9}{4}x + 3 =$$

(Sol:
$$4x^2 - 11x/4 - 4$$
)

m)
$$(2x^3 - x^2 + 3x - 1)(x^2 - 2x + 2) - 2x(x^3 - x^2 + 3x - 2) =$$

(Sol:
$$2x^5 - 7x^4 + 11x^3 - 15x^2 + 12x - 2$$
)

n)
$$\left(\frac{5x^3}{3} - \frac{2x^2}{5} + x - 7\right) \cdot \left(\frac{5}{2}x^2 - 3x\right) =$$

(Sol: $25x^5/6-6x^4+37x^3/10-41x^2/2+21x$)

o)
$$2x^2 - 3x + 4 - (2x^2 - 3x + 4)(2x^2 + 3x + 4) =$$

 $(Sol: -4x^4 - 5x^2 - 3x - 12)$

p)
$$\frac{5x}{6} (x^5 - x^2 + 3x - 1) - x^5 (\frac{1}{3}x^2 - \frac{5}{2}x + \frac{4}{3}) =$$

(Sol: $-x^7/3+10x^6/3-4x^5/3-5x^3/6+5x^2/2-5x/6$)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

FICHA 4: Cocientes de polinomios. Regla de Ruffini. Extraer factor común.

1. Efectuar los siguientes **cocientes** en los que intervienen **monomios**, simplificar, y comprobar el resultado:

a)
$$\frac{4x^3}{2x^2} =$$

b)
$$8x^4:(-2x^2)=$$

c)
$$\frac{7x^5}{2x^3} =$$

d)
$$-8x^3:(2x^2)=$$

e)
$$\frac{-3x^7}{-9x^4} =$$

$$f) \ \frac{-3x^4 + 6x^3 - 12x^2}{3x^2} =$$

g)
$$(8x^8 - 6x^4 - 4x^3) : (-4x^3) =$$

h)
$$\frac{-12x^9 + 2x^5 - x^4}{4x^4} =$$

i)
$$(-18x^3yz^3)$$
: $(6xyz^3)$ =

j)
$$\left[-3a \cdot (a^3b) + 5a^4b \right] : \left(-ab \right) =$$
 (Sol: -2a³)

k)
$$\frac{-3xy^2(-2x^3y)}{4x^2y} =$$
 (Sol: $3x^2y^2/2$)

2. Efectuar (en el cuaderno) las siguientes **divisiones de polinomios**, y <u>comprobar las sombreadas</u> mediante la regla D=d•C+R:

1)
$$x^4 - x^3 + 7x^2 + x + 15 x^2 + 2$$

(Soluc:
$$C(x)=x^2-x+5$$
; $R(x)=3x+5$)

(Soluc: C(x)=x³+x+1; División exacta)

2)
$$2x^5-x^3+2x^2-3x-3$$
 $2x^2-3$

3)
$$6x^4 - 10x^3 + x^2 + 11x - 6 \mid -2x^2 - 4x + 3$$

(Soluc:
$$C(x) = -3x^2 + 11x - 27$$
; $R(x) = -130x + 75$)

(Soluc:
$$C(x)=4x^3-2x^2+3x+1$$
; División exacta)

5)
$$8x^5 - 16x^4 + 20x^3 - 11x^2 + 3x + 2 2x^2 - 3x + 2$$

(Soluc:
$$C(x)=x+3$$
; $R(x)=-4x-1$)

(Soluc: C(x)=x+2; R(x)=2x+1)

7)
$$x^5-2x^4+3x^2-6 \mid x^4+1$$

4) $x^3+2x^2+x-1 | x^2-1$

(Soluc:
$$C(x)=x-2$$
; $R(x)=3x^2-x-4$)

8)
$$x^4+3x^3-2x+5$$
 $-x^3+2$

(Soluc:
$$C(x) = -x-3$$
; $R(x) = 11$)

9) x² | x²+1

10)
$$6x^4 - 4x^3 + 2x^2 - 12x \mid -2x$$

12)
$$3x^6+2x^4-3x^2+5 \mid x^3-2x+4$$

13)
$$x^3-4x^2+5x-8 \mid x-2$$

15)
$$x^4 - 7x^3 + 8x^2 - 2 \mid x - 1$$

16)
$$x^2+1 \mid x^2-4x+13$$

17)
$$3x^5-x^4+8x^2-5x-2 \mid x^2-x+1$$

18)
$$8x^5 - 16x^4 + 20x^3 - 11x^2 + 3x + 2$$
 $-2x^2 - 3x + 2$

19)
$$5x^4-2x^3+x-7 \mid x^2-1$$

20)
$$4x^5-3x^3+5x^2-7 \mid -2x^2-3x+5$$

21)
$$9x^3+3x^2-7x+2 \mid 3x^2+5$$

22)
$$4x^4-3x^2+5x-7 \mid 2x^2+x-3 \mid$$

23)
$$4x^5+3x^3-2x^2+5 \mid 2x^2-x+3$$

24)
$$6x^4+5x^2-3x+8 \mid 3x^3-2x-3 \mid$$

25)
$$4x^4+2x^3-3x^2+5x-1$$
 | $2x^2-3$

27)
$$3x^5+6x^4+6x^3+4x^2+2x+1 \mid 3x^2+3x+3$$

28)
$$4x^5-8x^4+2x^3+2x^2+1$$
 $4x^3-4x^2+2x$

29)
$$5x^4-10x^3+3x^2+1$$
 | $5x^2+1$

30)
$$6x^6-2x^5-11x^4+3x^3+18x^2-5x-5 \mid 2x^4-3x^2+5$$

31)
$$6x^4 - 13x^3 + 22x^2 - 14x + 8 | 3x^2 - 2x + 2$$

32)
$$x^4-2x^3+x^2-x+3$$
 | x^2+x+1

33)
$$4x^5 - 3x^3 + 5x^2 - 7$$
 $2x^2 - 3x + 5$

34)
$$6x^4 - 10x^3 + x^2 + 11x - 6 \mid 2x^2 - 4x + 3$$

35)
$$9x^3-21x^2+25x-10 \mid 3x^2-5x+5$$

36)
$$6x^4 - 13x^3 + 18x^2 - 14x + 4 \mid 3x - 2$$

37)
$$3x^5-5x^4+11x^3-6x^2+12x \mid x^4-x^3+3x^2+4$$

(Soluc:
$$C(x)=1$$
; $R(x)=-1$)

(Soluc:
$$C(x) = -3x^3 + 2x^2 - x + 6$$
; División exacta)

(Soluc:
$$C(x) = -1$$
; $R(x) = 2$)

(Soluc:
$$C(x)=3x^3+8x-12$$
; $R(x)=13x^2-56x+53$)

(Soluc:
$$C(x)=x^2-2x+1$$
; $R=-6$)

(Soluc:
$$C(x)=2x^4-6x^3+18x^2-51x+153$$
; $R(x)=-465$)

(Soluc:
$$C(x)=x^3-6x^2+2x+2$$
; División exacta)

(Soluc:
$$C(x)=1$$
; $R(x)=4x-12$)

(Soluc:
$$C(x)=3x^3+2x^2-x+5$$
; $R(x)=x-7$)

(Soluc:
$$C(x) = -4x^3 + 14x^2 - 35x + 72$$
; $R(x) = 289x - 142$)

(Soluc:
$$C(x)=5x^2-2x+5$$
; $R(x)=-x-2$)

(Soluc:
$$C(x) = -2x^3 + 3x^2 - 8x + 17$$
; $R(x) = 91x - 92$)

(Soluc:
$$C(x)=3x+1$$
; $R(x)=-22x-3$)

(Soluc:
$$C(x)=2x^2-x+2$$
; $R(x)=-1$)

(Soluc:
$$C(x)=2x^3+x^2-x-3$$
; $R(x)=14$)

(Soluc:
$$C(x)=2x$$
; $R(x)=9x^2+3x+8$)

(Soluc:
$$C(x)=2x^2+x+3/2$$
; $R(x)=8x+7/2$)

(Soluc:
$$C(x)=x^6-x^4+x^2-1$$
; $R(x)=1$)

(Soluc:
$$C(x)=x^3+x^2+1/3$$
; $R(x)=x$)

(Soluc:
$$C(x)=x^2-x-1$$
; $R(x)=2x+1$)

(Soluc:
$$C(x)=x^2-2x+2/5$$
; $R(x)=2x+3/5$)

(Soluc:
$$C(x)=3x^2-x-1$$
; División exacta)

(Soluc:
$$C(x)=2x^2-3x+4$$
; División exacta)

(Soluc:
$$C(x)=x^2-3x+3$$
; $R(x)=-x$)

(Soluc:
$$C(x)=2x^3+3x^2-2x-8$$
; $R(x)=-14x+33$)

(Soluc:
$$C(x)=3x^2+x-2$$
; División exacta)

(Soluc:
$$C(x)=2x^3-3x^2+4x-2$$
; División exacta)

(Soluc:
$$C(x)=3x-2$$
; $R(x)=8$)

38)
$$9x^4 - 30x^3 + 55x^2 - 50x + 15 \mid 3x^2 - 5x + 5$$

(Soluc: $C(x)=3x^2-5x+5$; R(x)=-10)

3. Ídem con las siguientes divisiones en las que intervienen coeficientes fraccionarios:

- a) $8x^4+3x^3+2x-2 \mid 4x^2+x-3$
- **b)** $2x^5-x^3+3x-9 \mid 2x^2-x+2$
- c) $6x^3-3x^2+2x-5 \mid 3x-2$
- **d)** $4x^4-x^3+x+5 \mid 2x^2-x+3 \mid$
- **e)** $6x^4+3x^3-5x^2+x-8 \mid 3x^2-5x+2$
- $8x^4 3x^2 + 7x 5 \mid 4x^2 3x + 2$
- **g)** $6x^5+5x^4+31x^2+2 \mid 2x^2+2 \mid$
- **h)** $3x^5-6x^4-x^3+10x^2-8x+2 \mid 3x^2-6x+1$
- i) $6x^4 x^3 + 2x^2 x 1 | 3x^2 + 2$

- (Soluc: $C(x)=2x^2+x/4+23/16$; R(x)=21x/16+37/16)
- (Soluc: $C(x)=x^3+x^2/2-5x/4-9/8$; R(x)=35x/8-27/4)
 - (Soluc: $C(x)=2x^2+x/3+8/9$; R(x)=-29/9)
 - (Soluc: $C(x)=2x^2+x/2-11/4$; R(x)=-13x/4+53/4)
- (Soluc: $C(x)=2x^2+13x/3+38/9$; R(x)=121x/9-148/9)
 - (Soluc: $C(x)=2x^2+3x/2-5/8$; R(x)=17x/8-15/4)
 - (Soluc: $C(x)=3x^3+5x^2/2-3x+13$; R(x)=6x-24)
 - (Soluc: $C(x)=x^3-2x/3+2$; R(x)=14x/3)
 - (Soluc: $C(x)=2x^2-x/3-2/3$; R(x)=-x/3+1/3)

4. Dados los siguientes polinomios:

$$P(x) = 9x^5 - 21x^4 + 27x^3 + 4x + 37$$

$$Q(x) = 9x^2 - 3x + 12$$

Hallar:

a)
$$Q(x) \cdot Q(x) =$$

(Sol: $81x^4 - 54x^3 + 225x^2 - 72x + 144$)

b) $P(x)-3x\cdot Q(x)=$

(Sol: $9x^5-21x^4+9x^2-32x+37$)

c) P(x):Q(x)

(Soluc: $C(x)=x^3-2x^2+x+3$; R(x)=x+1)

d) Extraer el máximo factor común en Q(x)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

5. TEORÍA: a) Inventar una división de polinomios cuyo cociente sea $C(x) = x^2 - 3x + 1$, el resto R(x) = x - 1 y el dividendo un polinomio de 4º grado.

- **b)** Un alumno sostiene que la división $4x^3+2x^2-4x+3$ $|2x^2-x+1|$ da C(x)=2x+2 y R(x)=-4x+1mientras que otro dice que es C(x)=2x+2 y R(x)=-4x-1. Uno de los dos tiene razón. Sin hacer la división, ¿quién es el que está en lo cierto? (Sol: el 1º)
- c) "Extrae decimales" en la siguiente división polinómica, hasta el "2º decimal", y después comprueba: $x^3+2x^2+x+1 | x^2-2x+3$

d) ¿Es lo mismo $(6x^4)$: $(2x^2)$ y $6x^4$: $2x^2$? Razonar la respuesta.

(Sol: No es lo mismo)

- e) Un alumno indica en un examen que el resultado de dividir $2x^4-4x^3+2x-2$ entre x+2 es $C(x)=2x^2+2$, R(x)=58. Sin efectuar la división, razonar que ello es imposible.
- f) Ídem con $C(x) = 2x^3 8x^2 + 16x 30$, R(x) = 2x 1. Efectuar finalmente la división.

6. Efectuar (en el cuaderno) las siguientes divisiones mediante la **regla de Ruffini**¹, y <u>comprobar las sombreadas</u> mediante la regla D=d·C+R:

1)
$$x^3-4x^2+5x-8 \mid x-2$$

2)
$$x^4-7x^3+8x^2-2 \mid x-1$$

3)
$$2x^4+3x^3-4x^2+x-18 \mid x-2$$

4)
$$2x^4+x^3-2x^2-1$$
 | $x+2$

5)
$$2x^5+3x^2-6 \mid x+3$$

6)
$$3x^4-10x^3-x^2-20x+5 \mid x-4$$

7)
$$2x^4-10x+8 \mid x+2$$

8)
$$3x^4+2x^3-5x^2+x \mid x+5$$

10)
$$x^3+2x^2+3x+1 \mid x-1$$

11)
$$x^4-2x^3+x^2+3x+1 \mid x-2$$

12)
$$-x^4-x^3+2x^2+2x \mid x-2$$

13)
$$2x^4 - 7x^3 + 4x^2 - 5x + 6 \mid x - 3 \mid$$

15)
$$x^4+x^3-x^2+x-1 | x+2$$

16)
$$x^4 + x^3 - x^2 | x + 1$$

17)
$$2x^4-4x^3+2x-2 \mid x+2$$

18)
$$-x^5-x^3+x+7$$
 $x-1$

19)
$$x^3-2x^2+5x-1/2 \mid x+1$$

20)
$$3x^6-2x^4+x^2+3 \mid x-2$$

21)
$$x^5 - x^4 + x^3 - x^2 + 1$$
 $x - 6$

22)
$$-5x^5+3x^3+x^2-1$$
 $x+1$

23)
$$x^3 - \frac{7}{2}x^2 - \frac{10}{3}x - 70$$
 $x - 6$

24)
$$x^4 - \frac{2}{3}x^3 + \frac{x^2}{2} + 3x + 1 | x+3 |$$

25)
$$2x^3+3x^2-1$$
 $x-1/2$

(Soluc:
$$C(x)=x^2-2x+1$$
; $R=-6$)

(Soluc:
$$C(x)=x^3-6x^2+2x+2$$
; División exacta)

(Soluc:
$$C(x)=2x^3+7x^2+10x+21$$
; $R=24$)

(Soluc:
$$C(x)=2x^3-3x^2+4x-8$$
; $R=15$)

(Soluc:
$$C(x)=2x^4-6x^3+18x^2-51x+153$$
; $R=-465$)

(Soluc:
$$C(x)=3x^3+2x^2+7x+8$$
; $R=37$)

(Soluc:
$$C(x)=2x^3-4x^2+8x-26$$
; $R=60$)

(Soluc:
$$C(x)=3x^3-13x^2+60x-299$$
; $R=1495$)

(Soluc:
$$C(x)=10x^2-50x+250$$
; $R=-1265$)

(Soluc:
$$C(x)=x^2+3x+6$$
; $R=7$)

(Soluc:
$$C(x)=x^3+x+5$$
; $R=11$)

(Soluc:
$$C(x) = -x^3 - 3x^2 - 4x - 6$$
; $R = -12$)

(Soluc:
$$C(x)=2x^3-x^2+x-2$$
; División exacta)

(Soluc:
$$C(x)=x^4+x^3+x^2+x+1$$
; $R=2$)

(Soluc:
$$C(x)=x^3-x^2+x-1$$
; $R=1$)

(Soluc:
$$C(x)=x^3-x+1$$
; $R=-1$)

(Soluc:
$$C(x)=2x^3-8x^2+16x-30$$
; $R=58$)

(Soluc:
$$C(x)=-x^4-x^3-2x^2-2x-1$$
; $R=6$)

(Soluc:
$$C(x)=x^2-3x+8$$
; $R=-17/2$)

(Soluc:
$$C(x)=3x^5+6x^4+10x^3+20x^2+41x+82$$
; $R=167$)

(Soluc:
$$C(x)=x^4+5x^3+31x^2+185x+1110$$
; $R=6661$)

(Soluc:
$$C(x) = -5x^4 + 5x^3 - 2x^2 + 3x - 3$$
; $R = 2$)

Soluc:
$$C(x) = x^2 + \frac{5}{2}x + \frac{35}{3}$$
; División exacta

Soluc:
$$C(x) = x^3 - \frac{11}{3}x^2 + \frac{23}{2}x - \frac{63}{2}$$
; $R(x) = \frac{191}{2}$

(Soluc:
$$C(x)=2x^2+4x+2$$
; División exacta)

¹ Paolo Ruffini (1765-1822), matemático italiano que ideó esta regla.

26)
$$3x^3+2x^2+2x-1 \mid x-1/3$$

(Soluc: $C(x)=3x^2+3x+3$; División exacta)

27)
$$ax^3-3a^2x^2+2a^3x+1 \mid x-a \mid$$

(Soluc:
$$C(x)=ax^2-2a^2x$$
; $R=1$)

28)
$$2x^4 - \frac{x^3}{2} + x - \frac{1}{2} |x+2|$$

Soluc:
$$C(x) = 2x^3 - \frac{9}{2}x^2 + 9x - 17; R(x) = \frac{67}{2}$$

(Soluc: $C(x)=x^4+2x^3+4x^2+8x+16$; R=32)

30)
$$6x^4 - 12x^3 - 15x^2 - 5 \mid x - 3 \mid$$

(Soluc: $C(x)=6x^3+6x^2+3x+9$; R=22)

31)
$$2x^4 + \frac{23}{2}x^3 + \frac{55}{3}x + 6$$
 $x+6$

Soluc: $C(x) = 2x^3 - \frac{x^2}{2} + 3x + \frac{1}{3}$; R(x) = 4

7. Dados
$$P(x)=2x^3-4x^2+8$$
 $Q(x)=2x^4-10x+8$

S(x)=x+2

. se pide:

a) Hallar, paso a paso, $P(x) - P(x) \cdot Q(x)$ (Soluc: $C(x) = -4x^7 + 8x^6 + 4x^4 - 54x^3 + 28x^2 + 80x - 56$)

b) Hallar Q(x):S(x) por división euclídea (indicar explícitamente el C(x) y R(x)) (Soluc: Ver ejerc. 6.7)

c) Hallar $P(x) - S(x) \cdot Q(x)$ (Soluc: $C(x) = -2x^6 - 4x^4 + 2x^3 + 6x^2 + 12x - 8$)

d) Hallar P(x):S(x) (Soluc: $C(x)=2x^2-8x+16$; R(x)=-24)

8. Extraer el máximo factor común posible (y comprobar mentalmente, aplicando la propiedad distributiva):

a)
$$4x^2 - 6x + 2x^3 =$$
 (Soluc: $2x(x^2+2x-3)$)

b)
$$3x^3 + 6x^2 - 12x =$$
 (Soluc: $3x(x^2 + 2x - 4)$)

c)
$$12x^4y^2 + 6x^2y^4 - 15x^3y =$$
 (Soluc: $3x^2y(4x^2y+2y^3-5x)$)

d)
$$-12x^3 - 8x^4 + 4x^2 + 4x^6 =$$
 (Soluc: $4x^2(x^4 - 2x^2 - 3x + 1)$)

e)
$$-3xy - 2xy^2 - 10x^2yz =$$
 (Soluc: $-xy(3+2y+10xz)$)

f)
$$-3x + 6x^2 + 12x^3 =$$
 (Soluc: $3x(4x^2+2x-1)$)

g)
$$2ab^2 - 4a^3b + 8a^4b^3 =$$
 (Soluc: $2ab(b-2a^2+4a^3b^2)$)

h)
$$2x^5 - 4x^4 - 6x^3 + 2x^2 =$$
 (Soluc: $2x^2(x^3-2x^2-3x+1)$)

i)
$$6x^3y^2 - 3x^2yz + 9xy^3z^2 =$$
 (Soluc: $3xy(2x^2y - xz + 3y^2z^2)$)

j)
$$15x^2y^2 - 5x^2y + 25x^2y^3 =$$
 (Soluc: $5x^2y(3y-1+5y^2)$)

k)
$$4x^2(x-3)-2x(x-3)^2 =$$
 (Soluc: $2x(x-3)(x+3)$)

I)
$$6a^2bc^2+3ac-12ab^2c^4+3a^2bc=$$
 (Soluc: $3ac(2abc+1-4b^2c^3+ab)$)

m)
$$21x^2y^3z^2 - 14xy^4z^2 + 7xy^3z^3 - 7xy^3z^2 =$$
 (Soluc: $7xy^3z^2(3x-2y+z-1)$)

FICHA 5: IDENTIDADES NOTABLES

$$(A + B)^2 = A^2 + 2AB + B^2$$

 $(A - B)^2 = A^2 - 2AB + B^2$
 $(A + B)(A - B) = A^2 - B^2$

Desarrollar las siguientes expresiones utilizando la identidad notable correspondiente, y simplificar. Obsérvense los primeros ejemplos:

1)
$$(x+5)^2 = x^2 + 2 \cdot x \cdot 5 + 5^2 = x^2 + 10x + 25$$

2)
$$(x-6)^2 = x^2 - 2 \cdot x \cdot 6 + 6^2 = x^2 - 12x + 36$$

3)
$$(x+2)(x-2) = x^2 - 2^2 = x^2 - 4$$

4)
$$(x+2)^2 =$$
 (Soluc: $x^2 + 4x + 4$)

5)
$$(x-3)^2 =$$
 (Soluc: $x^2 - 6x + 9$)

6)
$$(x+4)(x-4) =$$
 (Soluc: $x^2 - 16$)

7)
$$(x+3)^2 =$$
 (Soluc: $x^2 + 6x + 9$)

8)
$$(x-4)^2 =$$
 (Soluc: $x^2 - 8x + 16$)

9)
$$(x+5)(x-5) =$$
 (Soluc: $x^2 - 25$)

10)
$$(a+4)^2 =$$
 (Soluc: $a^2 + 8a + 16$)

11)
$$(a-2)^2 =$$
 (Soluc: $a^2 - 4a + 4$)

12)
$$(a-3)(a+3) =$$
 (Soluc: $a^2 - 9$)

13)
$$(2x+3)^2 =$$
 (Soluc: $4x^2 + 12x + 9$)

14)
$$(3x-2)^2 =$$
 (Soluc: $9x^2 - 12x + 4$)

15)
$$(2x+1)(2x-1) =$$
 (Soluc: $4x^2-1$)

16)
$$(3x+2)^2 =$$
 (Soluc: $9x^2 + 12x + 4$)

17)
$$(2x-5)^2 =$$
 (Soluc: $4x^2 - 20x + 25$)

18)
$$(3x-2)(3x+2) =$$
 (Soluc: $9x^2 - 4$)

19)
$$(4b+2)^2 =$$
 (Soluc: $16b^2 + 16b + 4$)

20)
$$(5b-3)^2 =$$
 (Soluc: $25b^2 - 30b + 9$)

ALFONSO GONZÁLEZ I.E.S. FERNANDO DE MENA. DPTO. DE MATEMÁTICAS

21)
$$(b+1)(b-1) =$$
 (Soluc: $b^2 - 1$)

22)
$$(4a+5)^2 =$$
 (Soluc: $16a^2 + 40a + 25$)

23)
$$(5a-2)^2 =$$
 (Soluc: $25a^2 - 20a + 4$)

24)
$$(5a+2)(5a-2)=$$
 (Soluc: $25a^2-4$)

25)
$$(4y+1)^2 =$$
 (Soluc: $16y^2 + 8y + 1$)

26)
$$(2y-3)^2 =$$
 (Soluc: $4y^2 - 12y + 9$)

27)
$$(2y-3)(2y+3) =$$
 (Soluc: $4y^2 - 9$)

28)
$$(3x+4)^2 =$$
 (Soluc: $9x^2 + 24x + 16$)

29)
$$(3x-1)^2 =$$
 (Soluc: $9x^2 - 6x + 1$)

30)
$$(3x+4)(3x-4) =$$
 (Soluc: $9x^2 - 16$)

31)
$$(5b+1)^2 =$$
 (Soluc: $25b^2 + 10b + 1$)

32)
$$(2x-4)^2 =$$
 (Soluc: $4x^2 - 16x + 16$)

33)
$$(4x-3)(4x+3) =$$
 (Soluc: $16x^2 - 9$)

34)
$$(x^2 + 3)^2 =$$
 (Soluc: $x^4 + 6x^2 + 9$)

35)
$$(2a^2 - 3b)^2 =$$
 (Soluc: $4a^4 - 12a^2b + 9b^2$)

36)
$$(m^3 + .4n)(m^3 - 4n) =$$
 (Soluc: $m^6 - 16n^2$)

37)
$$(3x^2 + x)^2 =$$
 (Soluc: $9x^4 + 6x^3 + x^2$)

38)
$$\left(5p^2 - q^3\right)^2 =$$
 (Soluc: $25p^4 - 10p^2q^3 + q^6$)

39)
$$(2x^3 - 7y^2)(2x^3 + 7y^2) =$$
 (Soluc: $4x^6 - 49y^4$)

41)
$$\left(\frac{2a}{3} - \frac{1}{2}\right)^2 =$$
 (Soluc: $\frac{4a^2}{9} - \frac{2a}{3} + \frac{1}{4}$)

43)
$$\left(\frac{x}{3} + 9\right)^2 =$$
 (Soluc: $\frac{x^2}{9} + 6x + 81$)

44)
$$\left(\frac{3}{2}y - \frac{1}{4}\right)^2 =$$

(Soluc:
$$\frac{9}{4}y^2 - \frac{3}{4}y + \frac{1}{16}$$
)

45)
$$\left(\frac{3}{4}a+2\right)\left(\frac{3}{4}a-2\right)=$$

(Soluc:
$$\frac{9}{16}a^2 - 4$$
)

2. Carlos, un alumno de 3º de ESO, indica lo siguiente en un examen:

$$(x+2)^2 = x^2 + 4$$

Razonar que se trata de un grave error. ¿Cuál sería la expresión correcta?

3. Desarrollar las siguientes expresiones utilizando la identidad notable correspondiente, y simplificar:

a)
$$(x-2)^2 + (x+3)^2 =$$

(Soluc: $2x^2 + 2x + 13$)

b)
$$(x+4)^2 - (x-1)^2 =$$

(Soluc: 10x + 15)

c)
$$(x+5)(x-5)-(x+5)^2 =$$

(Soluc: $-10x-50$)

d)
$$(2x+3)^2 - (2x-3)^2 + (2x+3)(2x-3) =$$

(Soluc: $4x^2 + 24x - 9$)

e)
$$(2x-5)^2 - (2x^2 + 5x - 1)(2x^2 - 3) =$$

(Soluc: $-4x^4 - 10x^3 + 12x^2 - 5x + 22$)

f)
$$(3x-2)^2 + (3x+2)(3x-2) =$$

(Soluc: $18x^2 - 12x$)

g)
$$(4x-5)(4x+5)+(4x-5)^2-(4x+5)^2=$$

(Soluc: $16x^2-80x-25$)

h)
$$(x^2 - 2x)^2 - (x^2 - 5x + 1)(x^2 + 2x - 3) =$$

(Soluc: $-x^3 + 16x^2 - 17x + 3$)

(2x-3)(2x+3)-(2x+3)(3x+2)=

j)
$$(2x+3)^2 - (2x^2 + 3x - 1) \cdot (2x+3) =$$

k)
$$(2x-3)\cdot(2x+3)+(2x-3)^2 =$$

I)
$$(3x+2)(x^2+3x-2)-(3x+2)(3x-2) =$$

(Soluc: $3x^3+2x^2$)

m)
$$(3x+2)^2 + (3x-2)^2 =$$

(Soluc: $18x^2 + 8$)

n)
$$(2x-5)^2 - (2x^2 - 5x + 3)(2x^2 - 1) =$$

(Soluc: $-4x^4 + 10x^3 - 25x + 28$)

FICHA 6: FACTORIZACIÓN de POLINOMIOS por RUFFINI

1. Factorizar los siguientes polinomios por Ruffini, y comprobar los sombreados:

1)	$P(x) = x^3 - 2x^2 - 5x + 6$	(Sol:(x-1)(x+2)(x-3))
----	------------------------------	-----------------------

2)
$$P(x) = x^3 - 5x^2 + 2x + 8$$
 (Sol: $(x+1)(x-2)(x-4)$)

3)
$$P(x) = x^3 + 3x^2 - 9x - 27$$
 (Sol: $(x+3)^2(x-3)$)

4)
$$P(x) = x^4 - 4x^3 - 7x^2 + 22x + 24$$
 (Sol: $(x+1)(x+2)(x-3)(x-4)$)

5)
$$P(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$$
 (Sol: $(x-1)(x-2)(x-3)(x-4)$)

6)
$$P(x) = x^3 - 15x^2 + 75x - 125$$
 (Sol: $(x-5)^3$)

7)
$$P(x) = x^3 + 4x^2 - 21x$$
 (Sol: $x(x-3)(x+7)$)

8)
$$P(x) = x^3 - 5x^2 - 9x + 45$$
 (Sol: $(x+3)(x-3)(x-5)$)

9)
$$P(x) = x^4 - 19x^3 + 126x^2 - 324x + 216$$
 (Sol: $(x-1)(x-6)^3$)

10)
$$P(x) = x^4 - 13x^2 + 36$$
 (Sol: $(x+2)(x-2)(x+3)(x-3)$)

11)
$$P(x) = x^4 - 64x^2$$

12)
$$P(x) = x^3 - 12x^2 + 47x - 60$$
 (Sol: $(x-3)(x-4)(x-5)$)

13)
$$P(x) = x^4 + x^3 - 3x^2 - x + 2$$
 (Sol: $(x-1)^2(x+1)(x+2)$)

14)
$$P(x) = x^4 + 8x^3 + 24x^2 + 32x + 16$$
 (Sol: $(x+2)^4$)

15)
$$P(x) = x^4 - 2x^3$$
 (Sol : $x^3(x-2)$)

16)
$$P(x) = x^4 - x^3 - 22x^2 + 16x + 96$$
 (Sol: $(x+2)(x-3)(x+4)(x-4)$)

17)
$$P(x) = x^3 - 39x + 70$$
 (Sol: $(x-2)(x-5)(x+7)$)